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Abstract We consider the problem of defining the Schrödinger equation for a hydro-
gen atom on R

3 × M where M denotes an m dimensional compact manifold. In the
present study, we discuss a method of taking non-separable potentials into account,
so that both the non-compact standard dimensions and the compact extra dimensions
contribute to the potential energy analogously to the radial dependence in the case of
only non-compact standard dimensions. While the hydrogen atom in a space of the
form R

3 × M, where M may be a generalized manifold obeying certain properties,
was studied by Van Gorder (J Math Phys 51:122104, 2010), that study was restricted
to cases in which the potential taken permitted a clean separation between the vari-
ables over R

3 and M. Furthermore, though there have been studies on the Coulomb
problems over various manifolds, such studies do not consider the case where some
of the dimensions are non-compact and others are compact. In the presence of non-
separable potential energy, and unlike the case of completely separable potential, a
complete knowledge of the former case does not imply a knowledge of the latter.

Keywords Hydrogen atom · Schrödinger equation · Eigen value problem ·
Non-separable potential · Compact extra dimensions

1 Introduction

While there has been much interest concerning extra dimensions in theoretical phys-
ics, relatively little literature exists regarding atoms in higher spatial dimensions than
three, particularly in the case in which the extra dimensions are compact. We should
mention that some results for the higher dimensional Kepler problem do exist; see, e.g.,
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Mladenov and Tsanov [1]. Naturally, the case of non-compact extra dimensions have
been more amenable to mathematical analysis. Some studies on the hydrogen-like
atom over higher dimensional Euclidean space include [2–7], whereas studies of more
complicated atomic structures appear in [8] and [9] for higher dimensional Euclid-
ean space. Nouri describes coherent states for the d-dimensional Coulomb problem in
[10], and problems in maintaining regularity of the wave functions for hydrogen atoms
defined over higher dimensional Euclidean space are discussed in [11–13] whereas
Burgbachera, Lämmerzahlb and Maciasc discuss a possible mathematical fix for this
problem of regularity in [14].

Although more complicated, quantum mechanical problems can be considered on
non-Euclidean space; indeed, “small” compact extra dimensions are a much more
likely candidate for higher spatial dimensions than the full hyperspace R

n . One physi-
cally realistic example of a candidate for any compact extra dimension would be Käh-
ler manifolds. Examples of studies on mathematical physics problems taking Kähler
manifolds or conifolds as the underlying space include [15–18]. Recently, Bellucci,
Nersessian and Yeranyan [19] address a quantum mechanics model on a Kähler con-
ifold, whereas Nersessian and Yeranyan [20] discuss the three-dimensional oscillator
and Coulomb systems reduced from Kähler spaces, which is quite relevant to the
hydrogen atom over Kähler spaces. In Van Gorder [21], a method of solving the
Schrödinger equation for a hydrogen-like atom over a space R

3 × M was discussed,
where M is a manifold or conifold which permits separability (that is, the Coulomb
potential is taken to only depend on the radial coordinate in the R

3 part of the space,
which allows for separability).

We shall review the method discussed in Van Gorder [21] for obtaining solutions
for wave functions governing a hydrogen-like atom over a space R

3 × M in the case
of completely separable variable cases in Sect. 2. In such cases, the Coulomb potential
depends only on the radial coordinate in R

3, as was outlined in [21]. However, such
an assumption of separability is unsatisfying, as it restricts the physical scenario too
greatly. It is reasonable to consider cases in which the potential is influenced by the
compact extra dimensions; indeed, it should be desirable to consider cases where the
compact extra dimensions influence the potential in some manner, as this appears to
be more physically plausible and may even lead to a detectability of extra dimensions
through minute changes in expected values taken by the wave functions (although any
such mechanism for this is beyond the scope of the present paper). Hence, in Sect. 3 we
consider a potential depending on both the radial coordinate in R

3 and on the position
on the compact manifold, M.

For illustrative purposes, in Sect. 4 we set M = Sm , the m-sphere. Separating
the Schrödinger equation as far as is possible, we obtain a partial differential equa-
tion in two variables, which is in analogy to the standard radial Schrödinger equation
obtained in [21]. Relevant boundary conditions are also discussed, as is the normaliza-
tion requirement. We introduce a coupling parameter, γ , which relates the strength of
the contributions of both the radial coordinate and the coordinate on Sm to the potential.
For small γ , we can discuss the first order perturbation theory for the model. We estab-
lish the dependence of the normalization coefficient on the coupling parameter, to first
order.
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We summarize the results in Sect. 5, and discuss how the method can be applied to
more general situations where the Hydrogen-like atom is defined over spaces of the
form R

n × M for well-behaved compact manifolds M.

2 Review of the general solution method for the hydrogen atom
on R

3 × M for separable potentials

Here we review the procedure given in [21]; while this material is covered in [21], it will
be useful the review this material in order to contrast the solution method with that of the
non-separable case considered in the next section. In order to find the wave function �

and associated energy spectrum E for the hydrogenic atom in higher dimensions than
three, we consider the eigenvalue problem (a time-independent Schrödinger equation)

Ĥ� = E� , where Ĥ = − h̄2

2μ
� + U , (2.1)

over R
3×M, where Ĥ is an elliptic operator, � is the Laplacian over R

3×M, U is the
potential energy (we will, in general, assume a potential U = U (r) for mathematical
simplicity), and M is a generalized manifold over which we may perform separation
of variables so that � = �R3 +�M with �R3 and �M denoting Laplacians over R

3

and M, respectively. (More accurately, �M denotes the Laplace-Beltrami operator
over M.) Then, assuming a separable solution to (2.1) of the form � = �1�2, where
�1 : R

3 → C and �2 : M → C, we have that �� = �2�R3�1 +�1�M�2, which
allows us to write (2.1) as a system of coupled linear eigenvalue problems, to wit:

− h̄2

2μ
�R3�1 + (U − E − �M)�1 = 0 , (2.2)

− h̄2

2μ
�M�2 + �M�2 = 0 , (2.3)

where the spectrum �M for �2 is obtained by the solution of the latter problem (2.3)
over M and then placed into (2.2) in order to obtain �1 and hence the full wave
function, �. In principle, �M provides us with the corrections to the standard energy
spectra, EN (for a hydrogen atom in R

3), that are needed due to the assumption of
extra dimensions which enter due to M. Naturally, the spectrum �M will depend
strongly on the choice of M. For now, we shall keep M arbitrary, and assume that a
non-trivial solution �2 to the eigenvalue problem (2.3) exists and admits non-trivial
spectrum

{
(�M)k

}
k∈K (where K is an index set). We then solve (2.2) subject to such

an assumption, and obtain both the wave function and energy spectrum for a hydro-
genic atom, in terms of �2 and the spectrum �M. Later, in Sect.3, we fix M so that
we may obtain explicit expressions for the wave function �2 and spectrum �M in
some interesting cases.

Under such assumptions, (2.2) becomes

− h̄2

2μ
�R3�1 + (

U − E − (�M)k
)
�1 = 0. (2.4)
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Assuming that �1 separates as (�1)l(r, θ, φ) = R(r)Yl(θ, φ) where R(r) is the radial
component and Yl(θ, φ) is a spherical harmonic (here, the index � runs as � ∈ N). Tak-
ing the Laplacian �R3 to spherical coordinates, (2.4) results in the coupled eigenvalue
problems

− h̄2

2μ

(
1

R

d

dr

(
r2 d R

dr

))
+ r2 (

U − E − (�M)k
) = − h̄2

2μ
λ , (2.5)

h̄2

2μ

(
1

Y sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+ 1

Y sin2 θ

∂2Y

∂φ2

)
= − h̄2

2μ
λ , (2.6)

where λ is a constant. It is well known that a solution Y�(θ, φ) to (2.6) results in
eigenvalues λ� = �(�+ 1) (the square of the angular momentum) where � ∈ N. Then,
placing this expression into (2.5), we obtain the radial equation

− h̄2

2μ

(
1

R

d

dr

(
r2 d R

dr

)
− �(� + 1)

)
+ r2 (

U − E − (�M)k
) = 0. (2.7)

Setting U to the Coulomb potential (that is, U = U (r) = −Ze2/r ), defining constants
a� = �(� + 1), b = −2μZe2/h̄2, ck = −(2μ/h̄2)(E + (�M)k) we obtain (making
use of generalized Laguerre polynomials)

��,k(r, θ, φ, w)= (−1)2�+1(2
√

ckr)�e−√
ckr

q!( q
2�+1

) L2�+1
q (2

√
ckr)Y�(θ, φ)�2,k(w) , (2.8)

where w ∈ M and q = � − b
2
√

ck
. Now, as we require �1 ∈ L2(R3), the quantization

condition � + 1 + b
2
√

ck
= −mr , where mr ∈ N is referred to as the radial quantum

number, must hold (and hence q = 2� + 1 + mr ∈ N
∗). Then, defining N = mr + �,

we have that the condition −(2μ/h̄2)(E + (�M)k) = ck = b2

4(N+1)2 holds and, in
fact, yields the ‘closed-form’ expression for the energy spectrum for the hydrogenic
atom over R

3 × M, viz.,

E = EN ,k = − μ(Ze2)2

2h̄2(N + 1)2
− (�M)k . (2.9)

Clearly, for (�M)0 = 0, EN ,0 from (2.9) gives the standard energy spectrum for the
hydrogen atom over R

3. Thus, the term (�M)k appears as a correction to the standard
energy spectrum, to account for the additional dimensions inherent in the model due
to the assumption of an underlying space of the form R

3 × M. For precision, note
that the indices in the above formulas run as � ∈ N, mr ∈ N and hence N ∈ N.

3 The hydrogen atom on R
n × M for non-separable potentials

While the above analysis is useful when the potential U does not depend on M in
any way, the above method of separation fails for reasonable choices of U which do

123



1424 J Math Chem (2012) 50:1420–1436

depend on M. However, such situations may be more physically reasonable. This
leads us to consider the case in which U depends on both the radial variable r and the
position on M.

Let us define a function g : M → [0, 1], which we take to be some form of normal-
ized distance on the compact manifold M. For instance, taking M to be a sphere, we
can take g = 0 at one pole, g = 1 at the other pole, and 0 < g < 1 for all other points.
We shall require that g be continuous. We then assume a potential which depends on
g; that is, U = U (r, g(ω)), where ω = (ω1, ω2, . . . , ωm) ∈ M. With such a choice
of potential, we may still separate the φ and θ coordinates in R

3, leaving a function
which depends on r ∈ [0,∞) and ω ∈ M; we denote this effective wave function as
X (r, ω), where � = X (r, ω)Y (φ, θ). Under such an assumption, the function X is
governed by an equation of the form

Xrr + 2

r
Xr + μk

r2 X + �MX + U (r, g(ω))

κ
X = E

κ
X , (3.1)

where κ = − h̄2

2μ
is defined for brevity and μk is an eigenvalue of the spectral problem

�S2 Yk = μkYk for the spherical harmonics Yk . Note that

�MX = Xgg

⎛

⎝
m∑

j=1

(
∂g

∂ω j

)2
⎞

⎠ + Xg

⎛

⎝
m∑

j=1

∂2g

∂ω2
j

⎞

⎠ . (3.2)

Picking g (which, recall, we are free to define in a convenient matter) to satisfy

m∑

j=1

(
∂g

∂ω j

)2

= F(g) (3.3)

and

m∑

j=1

∂2g

∂ω2
j

= G(g) , (3.4)

we have that �MX = F(g)Xgg + G(g)Xg and hence Eq. (3.1) becomes

Xrr + 2

r
Xr + μk

r2 X + F(g)Xgg + G(g)Xg + U (r, g)

κ
X = E

κ
X . (3.5)

Then, provided such a g = g(ω) exists, the spectral problem becomes effectively
two-dimensional. While any specific choice of U (r, g) could be contested due to lack
of explicit experimental support thus far for extra dimensions, we should note that
there are certain requirements which must be met. For g = 0, we should recover
the standard radial Schrödinger equation, and hence U (r, 0) = − Ze2

r . Therefore, as
r → 0, we expect the potential to be singular. Potentials of this form would be, for
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example, U (r, g) = − Ze2

r+γ g and U (r, g) = − Ze2

r(1+γ g)
. Here we have introduced a cou-

pling parameter with which to scale the contribution of the manifold on the potential.
Of course, far more complicated potentials are possible which satisfy the requirement
U (r, 0) = − Ze2

r .
For sake of demonstration, let us consider the latter example potential, U (r, g) =
U0

r(1+γ g)
, where U0 = −Ze2. More generally, such potentials take the form U (r, g) =

U0
r H(g). Under such an assumption, (3.5) takes the form

Xrr + 2

r
Xr + μk

r2 X + F(g)Xgg + G(g)Xg + Ũ0

r
H(g)X = Ẽ X . (3.6)

where Ũ0 = U0/κ and Ẽ = E/κ . We thus have a coupled non-separable (due to the
fact that the potential U depends on both r and g) linear partial differential equation
for X (r, g).

In principle, solving Eq. (3.6) is challenging due to the non-separability and the
singular nature of the equation. Hence, in order to obtain any type of solution, further
assumptions must be made. Making the reasonable assumption that g is normalized
so that g : M → [0, 1) and that g ∈ C2(M) (i.e., that g is twice continuously
differentiable in all of it’s variables), it makes sense to expand

F(g) =
∞∑

j=0

Fj g
j G(g) =

∞∑

j=0

G j g
j H(g) = 1 +

∞∑

j=1

Hj g
j . (3.7)

Note that such representations are reasonable given the properties of g, assuming that
such F and G exist. In fact, the series for F and G will terminate for most practical
applications. To illustrate this, we consider two examples.

Example 1 Let g(ω) = ∑m
j=1 |ω j |. Here, g is just the L1-norm. Let us assume that the

manifold M is defined so that ω j ≥ 0 for all j = 1, 2, . . . m. Then, g(ω) = ∑m
j=1 ω j .

From the definition of F and G we find that F(g) = m while G(g) = 0.

Example 2 Let g(ω) = exp
(∑m

j=1 |ω j |
)

− 1. Assuming again that ω j ≥ 0 for

all j = 1, 2, . . . m, we have g(ω) = exp
(∑m

j=1 ω j

)
. We then find that F(g) =

m exp
(

2
∑m

j=1 ω j

)
= m(g +1)2 = mg2 +2mg +m. Likewise, G(g) = m(g +1) =

mg + m.

Assuming that the compact manifold M is small, the we take the scaled quantity
γ to be small (we can scale g to be on the order of the diameter of M). Alternately,
we can keep g ∈ [0, 1], and introduce coupling parameter γ > 0. We then replace
F(g) → F(γ g), G(g) → G(γ g) and H(g) → H(γ g) in (3.7) so that we obtain
series in γ . Then, for the sake of preforming computations, we assume a solution of
the form

X (r, g) = X0(r, g) +
∞∑

j=1

X j (r, g)γ j . (3.8)
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Under such an assumption, we iteratively obtain the partial differential equations

L[X0] = 0 , (3.9)

L[X j ] =
j∑

i=1

ιi [X j−i ] for j ≥ 1 , (3.10)

where we define the operators

L = ∂2

∂r2 + 2

r

∂

∂r
+ F0

∂2

∂g2 + G0
∂

∂g
+

(
μk

r2 + Ũ0

r
− Ẽ

)

, (3.11)

ιi = −Fi
∂2

∂g2 − Gi
∂

∂g
− Ũ0

r
Hi . (3.12)

In order to determine the order zero term, X0, let us note that L[X0] = 0 is a sep-
arable PDE. Hence, we assume X0(r, g) = R(r)S(g), obtaining, through separation
of variables,

R′′(r)

R(r)
+ 2

r

R′(r)

R(r)
+

(
μk

r2 + Ũ0

r
− Ẽ

)

=−
0 =− F0S′′(g) + G0S′(g)

S(g)
. (3.13)

Note that �Mu(ω) = 
u(ω) is a spectral problem on M, admitting eigenfunctions
u j and corresponding spectrum 
 j for j ∈ J where J is an index set. Transform-
ing u(ω) → û(g), note that �Mû(g) = F(g)û′′(g) + G(g)û′(g) = 
û(g). If we
replace F(g) and G(g) with F(0) = F0 and G(0) = G0, respectively, then we modify
the spectral problem, obtaining modified spectra 
0

j . For each such j ∈ J , we thus

have an eigenfunction S j (g) and associated eigenvalue 
0
j such that �MS j (g) =

F0S′′
j (g) + G0S′

j (g) = 
0
j S j (g). With such choice of eigenfunction and eigenvalue,

the right hand equation in (3.13) is identically satisfied. Hence, the appropriate choice
of the S j ’s will lie in the structure of the compact manifold M. What remains is to
solve for R(r). Note that R(r) will depend on the index k (due to the hyperspherical
harmonics YK and associated spectral parameter μk) and on the index j (due to the
eigenfunctions S j on the manifold M and associated spectral parameter 
0

j ). Hence,
we consider Rk, j (r) satisfying the spectral problem

R′′
k, j (r) + 2

r
R′

k, j (r) +
(

μk

r2 + Ũ0

r
− 
0

j Ẽ

)

Rk, j (r) = 0 . (3.14)

The solution to this equation is essentially that given for the radial factor in (2.8),
replacing the energy spectra given in (2.9) with

EN , j = − μ(Ze2)2

2h̄2(N + 1)2
− 
0

j . (3.15)
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From here, we sum over all possible eigenstates j ∈ J , obtaining for each k the
function

X0(r, g) =
∑

j∈J

Rk, j (r)S j (g) , (3.16)

the zeroth order term in the perturbation solution for (3.6). Effectively, we have recov-
ered the solution of Sect. 2 (for the completely separable case where U depends on r ,
alone) as the zeroth-order approximation to the solution to the problem in which the
potential depends on both r and the position on the compact manifold M.

We may continue in this manner, iteratively obtaining the higher order terms X j .
Upon attempting such calculations, one sees that the computations quickly become
lengthy and complicated, with closed-form solutions either impossible or at the very
least impractical. However, for sufficiently small g, a first order approximation will
suffice. The equation governing X1(r, g) is

L[X1] = ι1[X0] = ι1

⎡

⎣
∑

j∈J

Rk, j (r)S j (g)

⎤

⎦ =
∑

j∈J

Rk, j (r)ι1[S j (g)] , (3.17)

as ι1 is a differential operator in g alone (although r does make an appearance in ι1 as
a coefficient). Let us denote

∑

j∈J

Rk, j (r)ι1[S j (g)] = −
∑

j∈J

Rk, j (r)

(

F1S′′
j (g) + G1S′

j (g) + Ũ0

r
S j (g)

)

= �1(r, g) . (3.18)

We may solve (3.17) by obtaining a Green’s function G so that

X1(r, g) =
∞∫

0

gmax∫

0

G(r − r ′, g − g′)�1(r
′, g′)dg′dr ′ . (3.19)

As M is compact, gmax, the maximum value of g, is taken to be finite. For the “small”
compact manifolds we are interested in, gmax 
 1.

In order to obtain such a Green’s function, we refer to the Fredholm theory. For the
basis of eigenfunctions

{
Rk, j (r)S j (g)

}
j∈J with associated eigenvalues Ẽk, j which L

admits, the Green’s function for L may be constructed as

G(r − r ′, g − g′) =
∑

j∈J

R†
k, j (r)Rk, j (r ′)S†

j (g)S j (g′)
Ẽk, j

, (3.20)
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where † denotes complex conjugation. Using (3.20) in Eq. (3.19), we obtain

X1(r, g) =
∑

j∈J

C [1]
j R†

k, j (r)S†
j (g) , (3.21)

where we define the coefficients C [1]
j by

C [1]
j =

∞∫

0

gmax∫

0

Rk, j (r
′)S j (g

′)�1(r
′, g′)dg′dr ′ . (3.22)

More generally, employing the same process, we find that for integer p ≥ 1

X p(r, g) =
∑

j∈J

C [p]
j R†

k, j (r)S†
j (g) , (3.23)

where

C [p]
j =

∞∫

0

gmax∫

0

Rk, j (r
′)S j (g

′)�p(r
′, g′)dg′dr ′ , (3.24)

and

�p(r, g) =
p∑

i=1

ιi [X p−i (r, g)]. (3.25)

4 The hydrogen atom on R
n × Sm: an illustrative case

The case of U depending on M and r is far more complicated than that addressed in
[21]. To permit some tractability, we consider the special case M = Sm for illustra-
tive purposes. Here we take the non-compact dimensions R

n ; when n = 3, we obtain
the most physically relevant solutions, though we shall keep n arbitrary for greater
generality.

Let us define the Laplacians

�Rn ≡ ∂2

∂r2 + n − 1

r

∂

∂r
+ 1

r2 �Sn−1 , (4.1)

�Sm ≡ ∂2

∂ω2
m

+ (m − 1) cot(ωm)
∂

∂ωm
+ 1

sin2(ωm)
�Sm−1 . (4.2)
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Then, for manifold Mσ = R
n × Sm with m-sphere of radius σ > 0, the Laplacian

over Mσ reads

�Mσ
= ∂2

∂r2 + n − 1

r

∂

∂r
+ 1

r2 �Sn−1 + 1

σ 2 �Sm . (4.3)

Defining the Hamiltonian

Ĥ = κ�Mσ
+ U , (4.4)

the Schrödinger equation for the wave function, �, becomes

Ĥ� = E� . (4.5)

Here the potential function U is in general a function of the n + m variables. In Van
Gorder [21], the case in which U = U (r) was considered, as this case permits sep-
arability in the variables. However, under such an assumption, the potential is not
influenced at all by the extra compact dimensions. In the present study, we will con-
sider the case in which the potential is influenced by the compact extra dimensions.
Along these lines, let us take U = U (r, ωm), so that U depends on the space R

n

radially (as is standard) while U depends on Sm azimuthally. Again, this is still a
simplifying assumption, and we do not claim that this is the most physically relevant
scenario. That said, this assumption does permit us to consider a non-separable case
which is analytically tractable.

4.1 Separation of variables

Let us separate variables into three groups: those influencing the potential, those in R
n

and not influencing the potential, and those in Sm and not influencing the potential.
We then make the assumption

� = X (r, ωn)Y (φ, θ1, . . . , θn−2)Z(ω1, . . . , ωm−1) . (4.6)

To Y and Z we have the associated spectral problems

�Sn−1 Y = μkY and �Sm−1 Z = ν j Z (4.7)

with respective spectra {μk}k∈K and
{
ν j

}
j∈J

. Here K and J are the appropriate index
sets.

Substituting (4.6) into (4.5), and applying (4.7) to remove the Y and Z terms, we
find that

κ Xrr + κ(n − 1)

r
Xr + κ

σ 2 Xωmωm + κ(m − 1)

σ 2 cot(ωm)Xωm

+
{

κμk

r2 + κν j

σ 2 sin2(ωm)
+ U (r, ωm) − E

}
X = 0 . (4.8)
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In analogy to the standard potential over R
3 we shall consider a potential of the form

U (r, ωm) = U0

r + γ σg(ωm)
, U0 ≡ −Ze2 (4.9)

where g(ωn) is a non-decreasing scaling function satisfying g(0) = 0 and g(ωm) > 0
for all ωm ∈ [0, π ]. The parameter γ ≥ 0 determines the strength of the contribution
of ωm relative to r . When γ = 0, we recover the standard potential discussed in Van
Gorder [21].

4.2 Boundary conditions and normalization

Relevant boundary conditions for the partial differential equation (4.8) include

X (r, 0) = R(r) , (4.10)

(at ωm = 0 we recover the solution for the radial Schrödinger equation on R
n)

Xr (0, ωm) = 0 , (4.11)

(the change in probability is zero at r = 0)

X (+∞, ωm) = 0 , (4.12)

(the probability is zero “at infinite radius”)

Xωm (r, π) = 0 , (4.13)

(the change in probability is zero at “the top” of the sphere).
In addition to boundary conditions, one must be mindful of the normalization con-

dition

∫

A
XdA = 1 (4.14)

due to conservation of probability, where A = R
n × Sm . Assuming that the eigen-

functions Y (φ, θ1, . . . , θn−2) and Z(ω1, . . . , ωm−1) are appropriately normalized, the
above implies that

∞∫

0

π∫

0

Xdωmdr = 1. (4.15)
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4.3 PDE for g(ωm) = sin2(ωm/2)

Let us consider a potential U of the form

U (r, ωm) = U0

r + γ σ sin2(ωm/2)
, (4.16)

and let us make the change of variable χ = sin2(ωm/2) along with the change of
function

X (r, ω) = 1

(1 − χ)χ
X̃(r, χ) . (4.17)

Upon placing the transformed quantities into (4.8), we obtain

κ X̃rr + κ(n − 1)

r
X̃r + κ

σ 2 X̃χχ + κ(m − 4)

2σ 2

1 − 2χ

(1 − χ)χ
X̃χ

+
{

κμk

r2 + κ

4σ 2

[
8(m − 4)

χ
+ ν j

(1 − χ)2χ2

]
+ U0

r + γ σχ
− E

}
X̃ = 0.

(4.18)

4.4 Perturbation expansion in γ

The partial differential equation (4.18) is non-separable, due to the form of the potential
taken. However, small values of γ are physically reasonable, hence we shall discuss
a perturbation solution which gives the first order perturbation for the solution X̃ to
(4.18). To this end, consider

X̃(r, χ) = X [0](r, χ) + γ X [1](r, χ) + O(γ 2) . (4.19)

Note that we shall make use of the expansion

U (r, ωm) = U0

r + γ σχ
= U0

r
− γ

σU0χ

r2 + O(γ 2) , (4.20)

for small γ . Separating the O(1) and O(γ ) terms, we find that (4.18) yields

κ X [0]
rr + κ(n − 1)

r
X [0]

r + κ

σ 2 X [0]
χχ + κ(m − 4)

2σ 2

1 − 2χ

(1 − χ)χ
X [0]

χ

+
{

κμk

r2 + κ

4σ 2

[
8(m − 4)

χ
+ ν j

(1 − χ)2χ2

]
+ U0

r
− E

}
X [0] = 0 , (4.21)

κ X [1]
rr + κ(n − 1)

r
X [1]

r + κ

σ 2 X [1]
χχ + κ(m − 4)

2σ 2

1 − 2χ

(1 − χ)χ
X [1]

χ

+
{

κμk

r2 + κ

4σ 2

[
8(m − 4)

χ
+ ν j

(1 − χ)2χ2

]
+ U0

r
−E

}
X [1] = σU0χ

r2 X [0]. (4.22)
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4.5 Zeroth-order perturbation theory

Let us deal with X [0] first. Note that Eq. (4.21) is separable in r and χ , so let us assume
a solution of the form X [0] = Cρ(r)η(χ). Placing this into (4.21) we find that

Lrρ = κ
∂2ρ

∂r2 + κ(n − 1)

r

∂ρ

∂r
+

[
κμk

r2 + U0

r
− E

]
ρ = −λρ (4.23)

and

Lχη = κ

σ 2

∂2η

∂χ2 + κ(m − 4)

2σ 2

1 − 2χ

(1 − χ)χ

∂η

∂χ

+ κ

4σ 2

[
8(m − 4)

χ
+ ν j

(1 − χ)2χ2

]
η = λη, (4.24)

where λ is a constant and Lr , Lχ denote differential operators for future reference.
Note that solutions to (4.23) are of the form ρ(r) = R[n](r), where R is the radial
function described in [21] (in the three-dimensional n = 3 case; for n > 3 we lose
regularity) which, as demonstrated in (2.8), may be written in terms of generalized
Laguerre polynomials. Solutions to (4.24) must satisfy the boundary conditions η(0) =
0 and η′(1) = 0 (which follow from the change of variables ωm → χ ) and must be
regular. There are two independent HeunC type solutions (confluent hypergeometric
functions), one of which fails regularity. The remaining solution is of the form

η(χ) = Constant × exp

(

σ

√
λ

κ
χ

)

[x(1 − x)]
1
4

[√
(m−6)2−4ν j −(m−6)

]

×HeunC

⎛

⎝2σ

√
λ

κ
,

√
(m − 6)2 − 4ν j

2
,

√
(m − 6)2 − 4ν j

2
, 2m

−8,−
(

ν j

2
+ m2

8
+ m − 13

2

)
, χ

)
, (4.25)

which always satisfies η(0) = 0. Furthermore, this solution has a regular deriva-
tive at χ = 1 (and hence permits the boundary condition η′(1) = 0) provided that√

(m − 6)2 − 4ν j − (m −6) > 1, i.e. as ν j ≥ 0, we must have m is an integer satisfy-
ing 0 < m < 6. Which this restriction on m is limiting, this is likely more due to the
form of the toy model taken, than any physically meaningful bound on the dimension
of the compact extra dimensions. The constant coefficient can be ignored, as we have
already introduced a normalizing constant C .

With solutions to ρ(r) and η(χ) we have now determined the order-zero pertur-
bation contributions, which basically gives the wave function for the case where the
potential is influenced only by the radial variable, r , and not by any variables in the
space Sm . The first order perturbation will then give an approximation to the depen-
dence of the wave function on a potential which takes into account both r and ωm .
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4.6 First-order perturbation theory

In order to simplify the inhomogeneity present in (4.22), observe that we can write
this equation as

(Lr + Lχ )X [1] = σU0χ

r2 ρ(r)η(χ) . (4.26)

Making the substitution

X [1](r, χ) = CσU0ξ(r, χ)ρ(r)η(χ) (4.27)

we find that using (4.23) and (4.24)) (4.26) reduces to

(Lr + Lχ )ξ(r, χ) = χ

r2 . (4.28)

While this equation is still inhomogeneous and non-separable, at least we have
removed the dependence on X [0] from the right hand side. Inverting the linear operators
subject to homogeneous boundary data, we would obtain

ξ(r, χ) = (Lr + Lχ )−1
[ χ

r2

]
. (4.29)

This solution, while difficult to write explicitly, can be determined numerically for
fixed values of the physical parameters. In particular, let G(r, r̂ , χ, χ̂) be the Green’s
function for the linear differential operator Lr + Lχ . Such a function G(r, r̂ , χ, χ̂)

can be found via eigenfunction expansion in the standard way; this is messy, and we
omit the specifics, however this method allows a constructive proof of the existence
of such a function G(r, r̂ , χ, χ̂). We will then obtain

ξ(r, χ) =
∞∫

0

1∫

0

G(r, r̂ , χ, χ̂)
χ̂

r̂2 dχ̂dr̂ . (4.30)

The first order perturbation theory is then given by

X̃(r, χ) = C
(

1 + γ σU0ξ(r, χ) + O(γ 2)
)

ρ(r)η(χ). (4.31)

Hence, the separable solution Cρ(r)η(χ) is perturbed by a variable coefficient
ξ(r, χ) for positive values of the coupling parameter γ when we move to the non-
separable case.

4.7 γ -dependent normalization

One now sees that the normalization coefficient should depend on the value of γ taken;
i.e., C = C(γ ). When γ = 0, we obtain the normalization for the case discussed in
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[21], whereas for γ > 0 the value of the normalization coefficient should change.
Placing (4.31) into the normalization requirement (4.15), we obtain

C(γ )

∞∫

0

1∫

0

(1 + γ σU0ξ(r, χ))
ρ(r)η(χ)dχdr

(x(1 − x))3/2 = 1 . (4.32)

It is then clear to see that C(γ ) scales as

C(γ ) = C0 −
⎛

⎝σU0C2
0

∞∫

0

1∫

0

ξ(r, χ)ρ(r)η(χ)

(x(1 − x))3/2 dχdr

⎞

⎠ γ + O(γ 2) , (4.33)

where C0 is the normalization for the case in which the potential depends only on r
(i.e., U0/r ) and is given by

C0 = 1
∫ ∞

0

∫ 1
0

ρ(r)η(χ)

(x(1−x))3/2 dχdr
. (4.34)

5 Conclusions

What we have done here was derive a non-separable PDE describing the eigenvalue
problem for a hydrogen-like atom over a space of the form R

n ×M. This serves as an
extension of the methods and results discussed in Van Gorder [21], as we considered a
case where the potential energy depends not only on r (which was the case considered
in Van Gorder [21], as it permitted separability of the radial variable from all other
variables) but also on the compact extra dimensions. In particular, when the depen-
dence of the Coulomb potential on the compact extra dimensions is small (relative to
the dependence of the Coulomb potential on r ), a perturbation expansion and related
first order perturbation solution shows that the qualitative form of the separable and
non-separable solutions for the hydrogen wave functions agree up to a scale factor.
In the case of the non-separable potential, this scale factor is variable; in particular, it
depends on both the radial coordinate r and the coordinates considered from M. For
the special case M = Sm considered in Sect. 4, the coordinate taken corresponded to
ωm , although if other variables, or more than one variable, were taken from Sm , it is
clear to see that the obtained scale factor would depend on any such variables which
enter into the Coulomb potential.

Symbolically, when �γ=0 denotes the wave function for a hydrogen atom over
R

n × Sm with Coulomb potential which scales as only a function of r (i.e., U =
U (r) ∼ 1/r ), the wave function �γ for a hydrogen atom over R

n × Sm with a
potential depending on r and one or more of the coordinates ω1, ω2, . . ., ωm (i.e.,
U = U (r, γω1, . . . , γ ωm)) will take the form �γ = (1 + γ F1 + γ 2 F2 + · · · )�γ=0
where the Fk’s are higher order corrections which account for any dependence of U
on the coordinates for Sm . We may view 1 + γ F1 + γ 2 F2 + · · · as the Taylor expan-
sion of a function F(γ, r, ω1, . . . , ωm) about γ = 0. Then, we have �γ = F�γ=0.
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As contributions of the compact extra dimensions in the potential are likely small
(though doubtfully negligible), the perturbation expansion in the coupling parameter
γ seems reasonable, and thus the first order perturbation theory is expected to be
qualitatively realistic for the model considered.

Furthermore, for sufficiently well-behaved manifolds (i.e., the so-called “tame man-
ifolds”) describing the compact extra dimensions, we expect similar methods and
derivations to hold. In other words, for a Hydrogen atom over R

n × M (M is a well-
behaved manifold with dim(M) = m), if the Coulomb potential’s dependence is U =
U (r,−→ω )=U0

[
r +γ g(−→ω ))

]−1 (where −→ω ∈ M) then we may always (after separating
the angular variables from Rn) write the remaining parts of the Schrödinger operator as

L̂r + L̂−→ω + U0

r + γ g(−→ω ))
(5.1)

where L̂r and L̂−→ω are linear second order differential operators in the variables indi-
cated by subscripts. Expanding X (r,−→ω ), the multiplicative factor of the wave function
governed by the variables (r,−→ω ), in a γ -series as X = X [0] +γ X [1] + · · · we see that
the Schrödinger operator (5.1) leads to a system of PDEs from which the X [k]’s may
be obtained. The order zero term corresponds to a solution of

(
L̂r + L̂−→ω + U0

r

)
X [0] = 0 , (5.2)

which is exactly separable, and, thus, admits closed-form solutions. Note that such
solutions correspond to the type of solution discussed in [21]. The solution for
the next term, X [1], is in general non-separable and gives the first order perturba-
tion theory, which may be found in a manner similar to the methods discussed in
Sect. 3. By such methods, one may construct the first order perturbation theory for
Hyderogen-like atoms over R

n × M governed by Coulomb potentials of the form
U = U0

[
r + γ g(−→ω )

]−1 or U = U0
[
r(1 + γ g(−→ω ))

]−1.
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